The OPE Randomness Hypothesis and Euclidean Wormholes
Update: 2021-04-06
Description
Recent developments in holography indicate that the semi-classical Euclidean path-integral of Einstein gravity is much more powerful than previously anticipated. It is capable of reproducing a unitary Page curve for black hole evaporation, and can even capture some features of the discrete nature of black hole microstates. Wormhole geometries play a key role in this context. I will propose a mechanism to explain this in the CFT: the OPE Randomness Hypothesis. This ansatz is a generalization of the Eigenstate Thermalization Hypothesis which applies to chaotic CFTs, and treats OPE coefficients of heavy operators as random variables with a given probability distribution. I will present two applications of this framework: First, it resolves a factorization puzzle in AdS_3/CFT_2 due to the genus-2 wormhole, as raised by Maoz and Maldacena. Second, it provides an argument against global symmetries in quantum gravity.
Comments
Top Podcasts
The Best New Comedy Podcast Right Now – June 2024The Best News Podcast Right Now – June 2024The Best New Business Podcast Right Now – June 2024The Best New Sports Podcast Right Now – June 2024The Best New True Crime Podcast Right Now – June 2024The Best New Joe Rogan Experience Podcast Right Now – June 20The Best New Dan Bongino Show Podcast Right Now – June 20The Best New Mark Levin Podcast – June 2024
In Channel