Towards a more robust automatic velocity analysis method
Update: 2014-02-28
Description
Co-author: C.-A. Lameloise (MINES ParisTech)
In the context of seismic imaging, we analyse artefacts related to a classical objective functional, the "Differential Semblance Optimization" approach (DSO). This functional has been defined to automatically retrieve a velocity model needed to image complex structures with seismic waves. In practice, it may fail due to the presence of a number of artefacts.
We propose two complementary approaches: first, we give evidence that a quantitative migration scheme is useful to compensate for uneven subsurface illumination. Second, we propose to slightly modify the objective function such that its gradient does not exhibit spurious oscillations for models containing interfaces or discontinuities.
In the context of seismic imaging, we analyse artefacts related to a classical objective functional, the "Differential Semblance Optimization" approach (DSO). This functional has been defined to automatically retrieve a velocity model needed to image complex structures with seismic waves. In practice, it may fail due to the presence of a number of artefacts.
We propose two complementary approaches: first, we give evidence that a quantitative migration scheme is useful to compensate for uneven subsurface illumination. Second, we propose to slightly modify the objective function such that its gradient does not exhibit spurious oscillations for models containing interfaces or discontinuities.
Comments
In Channel