#101 Black Holes Collisions & Gravitational Waves, with LIGO Experts Christopher Berry & John Veitch
Description
Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!
In this episode, we dive deep into gravitational wave astronomy, with Christopher Berry and John Veitch, two senior lecturers at the University of Glasgow and experts from the LIGO-VIRGO collaboration. They explain the significance of detecting gravitational waves, which are essential for understanding black holes and neutron stars collisions. This research not only sheds light on these distant events but also helps us grasp the fundamental workings of the universe.
Our discussion focuses on the integral role of Bayesian statistics, detailing how they use nested sampling for extracting crucial information from the subtle signals of gravitational waves. This approach is vital for parameter estimation and understanding the distribution of cosmic sources through population inferences.
Concluding the episode, Christopher and John highlight the latest advancements in black hole astrophysics and tests of general relativity, and touch upon the exciting prospects and challenges of the upcoming space-based LISA mission.
Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !
Thank you to my Patrons for making this episode possible!
Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony, Joshua Meehl, Javier Sabio, Kristian Higgins, Alex Jones, Gregorio Aguilar, Matt Rosinski, Bart Trudeau, Luis Fonseca, Dante Gates, Matt Niccolls, Maksim Kuznecov, Michael Thomas, Luke Gorrie, Cory Kiser and Julio.
Visit https://www.patreon.com/learnbayesstats to unlock exclusive Bayesian swag ;)
Takeaways:
⁃ Gravitational wave analysis involves using Bayesian statistics for parameter estimation and population inference.
⁃ Nested sampling is a powerful algorithm used in gravitational wave analysis to explore parameter space and calculate the evidence for model selection.
⁃ Machine learning techniques, such as normalizing flows, can be integrated with nested sampling to improve efficiency and explore complex distributions.
⁃ The LIGO-VIRGO collaboration operates gravitational wave detectors that measure distortions in space and time caused by black hole and neutron star collisions.
⁃ Sources of noise in gravitational wave detection include laser noise, thermal noise, seismic motion, and gravitational coupling.
⁃ The LISA mission is a space-based gravitational wave detector that aims to observe lower frequency gravitational waves and unlock new astrophysical phenomena.
⁃ Space-based detectors like LISA can avoid the ground-based noise and observe a different part of the gravitational wave spectrum, providing new insights into the universe.
⁃ The data analysis challenges for space-based detectors are complex, as they require fitting multiple sources simultaneously and dealing with overlapping signals.
⁃ Gravitational wave observations have the potential to test general relativity, study the astrophysics of black holes and neutron stars, and provide insights into cosmology.
Links from the show:
- Christopher’s’ website: https://cplberry.com/
- John’s website: https://www.veitch.me.uk/
- Christopher on GitHub: https://github.com/cplb/
- John on GitHub: https://github.com/johnveitch
- Christopher on Linkedin: http://www.linkedin.com/in/cplberry
- John on Linkedin: https://www.linkedin.com/in/john-veitch-56772225/
- Christopher on Twitter: https://twitter.com/cplberry
- John on Twitter: https://twitter.com/johnveitch
- Christopher on Mastodon: https://mastodon.scot/@cplberry@mastodon.online
- John on Mastodon: https://mastodon.scot/@JohnVeitch
- LIGO website: https://www.ligo.org/
- LIGO Gitlab: https://git.ligo.org/users/sign_in
- Gravitational Wave Open Science Center: https://gwosc.org/
- LIGO Caltech Lab: https://www.ligo.caltech.edu/page/ligo-data
- Exoplanet, python package for probabilistic modeling of time series data in astronomy: https://docs.exoplanet.codes/en/latest/
- Dynamic Nested Sampling with dynesty: https://dynesty.readthedocs.io/en/latest/dynamic.html
- Nessai, Nested sampling with artificial intelligence: https://nessai.readthedocs.io/
- LBS #98 Fusing Statistical Physics, Machine Learning & Adaptive MCMC, with Marylou Gabrié: https://learnbayesstats.com/episode/98-fusing-statistical-physics-machine-learning-adaptive-mcmc-marylou-gabrie/
- bayeux, JAX models with state-of-the-art inference methods: https://jax-ml.github.io/bayeux/
- LBS #51 Bernoulli’s Fallacy & the Crisis of Modern Science, with Aubrey Clayton: https://learnbayesstats.com/episode/51-bernoullis-fallacy-crisis-modern-science-aubrey-clayton/
- Aubrey Clayton's Probability Theory Lectures based on E.T Jaynes book: https://www.youtube.com/playlist?list=PL9v9IXDsJkktefQzX39wC2YG07vw7DsQ_
Transcript
This is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.