Apple silicon speed test: Every iPhone, iPad, and Mac processor compared
Description
<body>
At the heart of every Apple device is an Apple processor. Apple has been using its own chips in its iPhones and iPads for more than a decade, while Apple silicon in the Mac is already in its fourth generation.
What’s remarkable about Apple silicon is its performance and power efficiency. But all chips aren’t created equally. Understanding the performance differences between each chip will help with your buying decisions, especially when you’re deciding between iPhone 16 or MacBook models. Knowing how each chip performs gives you a better idea of what products to buy and whether or not it’s worth your money to step up to a higher model.
Let’s take a look at how the new processors compare with the rest of the processors in the iPhone, iPad, and Mac lineup and see how each performs and what that means to you. For the sake of consistency, we’ve used Geekbench 6 benchmarks. Here’s every chip and how the benchmarks compare with each other.
Update November 13, 2024: Added benchmarks for the M4 chips.
Every current processor compared
Results are scores. Higher scores/longer bars are faster. Chips in this chart are currently available in Apple devices.
Before we get into the individual processors, let’s let the chips fall where they may. In the above chart, we’ve only included chips that are in Apple’s current product lineups for the sake of keeping the chart manageable. The Mac section below includes all of the chips, from the M1 to the current chip. If you’re looking for scores of chips that are no longer being used in Apple’s active iPhone or iPad lineups (such as the A12 Bionic), check out the Geekbench Browser.
It’s a somewhat predictable chart, with the fastest Mac chips at the top, followed by a mix of iPads and iPhones. But there are still some fascinating results: owners of the iPad Pro can say their tablet is about as fast as a MacBook Air and that wouldn’t be much of a reach. And the difference between the $399 iPhone SE and the $899 iPhone 14 isn’t as huge as their price difference indicates.
If you’re not seeing all the bar chart labels, it may be because your browser font is set larger than the default, or your browser is zoomed in. You’ll need to set the font size and browser view to the default to see all the chart labels.
Read about how Apple’s M series processors compare to Intel in our Mac processor guide.
iPhone processors
Results are scores. Higher scores/longer bars are faster. Chips in this chart are currently available in Apple devices.
Let’s look at the specifications of the iPhones currently in Apple’s lineup so we can understand the differences between them.
<figure class="wp-block-table is-style-stripes">
Processor | Performance cores | Efficiency cores | Graphics cores | Neural Engine | Memory | Thermal Design Power | Devices |
---|---|---|---|---|---|---|---|
A18 Pro | 2 at 4.04GHz | 4 at 2.2GHz | 6 | 16-core | 8GB | 10W | iPhone 16 Pro iPhone 16 Pro Max |
A18 | 2 at 4.04GHz | 4 at 2.2GHz | 5 | 16-core | 8GB | 9W | iPhone 16 iPhone 16 Plus |
A16 Bionic | 2 at 3.46GHz | 4 at 2.02GHz | 5 | 16-core | 8GB | 6W | iPhone 15 |
A15 Bionic | 2 at 3.22GHz | 4 at 1.82GHz | 5 | 16-core | 8GB | 6W | iPhone 14 |
A15 Bionic | 2 at 3.22GHz | 4 at 1.82GHz | 4 | 16-core | 8GB | 6W | iPhone SE |
Not surprisingly, the A18 Pro in the iPhone 16 Pro is the fastest. The difference between the A18 Pro and the A18 in the iPhone 16 is that the A18 has one fewer GPU core.
The iPhone 14 and iPhone SE both have an A15 Bionic processor, but the iPhone 14 has one more GPU core than the iPhone 13, so it offers better graphics performance.
iPad processors
Results are scores. Higher scores/lo