Biotech startup working with Oracle to innovate for pharma
Description
00;00;00;00 - 00;00;26;06
How was academia fostering research that later turns into startup companies? What are new computational powers bringing to in Silico drug design and what is moveable type methods? And why should pharma be excited about it? We'll get those answers and more on research and action in the lead. The leading scene. Hello and welcome to Research and Action, brought to you by Oracle for Research.
00;00;26;06 - 00;01;00;18
I'm Mike Stiles. And today our guest is Lance Wester Hof, who is president and general manager of Quantum Bio. That's a biotech startup that operates in the field of drug discovery and molecular design. Lance oversees day to day management, including the research, development and deployment of advanced technology, as well as strategic partnerships and business development. He earned his Ph.D. in chemistry at Penn State, and he's an entrepreneur, a computational biochemist and published scientist with projects involving the synergistic application of quantum mechanics and molecular mechanics in the life and pharmaceutical sciences.
00;01;00;20 - 00;01;24;09
In fact, Quantum Bio earned a small business innovation research grant from the NIH to run calculations for their movable type methodology. Research. They'll be working with Oracle on that project. So, Lance, we're really glad to have you with us. Certainly. Well, thank you for having me. I look forward to the discussion. Well, listeners, I hope you're ready to get into the weeds because we're going to get into chemistry quantum and all the exciting things that are becoming possible.
00;01;24;12 - 00;01;44;12
And it's all emerging science and technology. So keep listening. You'll be well caught up. But to start, we're always interested in what got you, Lance, and what you're doing. What was that professional and personal journey like? Certainly. Yeah, well, and actually, I when I first started things out or I just started really putting my head around what I wanted to do for a living.
00;01;44;15 - 00;02;06;22
Science was actually pretty far from from the discussion or my thought process I'd actually started is as a semiprofessional professional amateur theater geek, doing a lot of five local theater, that sort of thing. I worked at a local Renaissance fair, you know, those sorts of things that that that people that wanted to go more into the the arts.
00;02;06;22 - 00;02;24;22
If you will, you're really wanted to do. And then one day I was when I was in high school and starting to think about what I wanted to do for a living, it just kind of dawned on me that, you know, you could be the best actor in the world and be very successful as a and have a lot of a lot of great enjoyment.
00;02;24;24 - 00;02;46;20
But if you don't catch a break, you can have all sorts of professional and financial difficulties throughout life. And so I started looking at what classes I did well in in high school or what I was doing well. And at that time I was in 10th grade and of course it was the sciences biology at the time. And at the same time I was I had always been into computers.
00;02;46;23 - 00;03;09;06
And so I think my first computer was a Vic 20, which I believe as I, as I looked up, just came out in 1980. So so that kind of puts it perspective that I was about six years old, and so I knew that I would want to do something with computers, something with biology. So then I started really setting up my my high school career for that, for that sort of background.
00;03;09;06 - 00;03;36;13
I studied some theater on the side. Theater is always fun, but, you know, that was where I focused my energy. Then I went to college. I ended up majoring in biochemistry and computer science with an eye towards doing exactly what I'm doing now. And so my wife always jokes with me that and she knew me then too, that, you know, I wanted to do something that most people, including her at the time, had never heard of before, and that was computational biochemistry or computational chemistry.
00;03;36;18 - 00;03;54;15
And so I spent my years in college, you know, certainly learned a lot in biology. I was I was more focused on the biology versus the chemistry side of things, you know, And of course, like I said, with the comp sci. But then when I went, when I started looking at grad school, I had already met my future advisor at the time.
00;03;54;15 - 00;04;18;14
His name is Kenny Myers began at Penn State at the time and now he's he's moved on as well. But I actually had met him a couple of years before I graduated from college and, you know, started talking to him. And then we ended up I decided that was the lab that I wanted to work in. You know, once I went to Penn State and so as I settled in into graduate school again, that would have been in 1998 when I had started grad school.
00;04;18;16 - 00;04;45;15
By about 2000, 2001, you know, I was really starting to think about and talking to him, of course, at the same time about the possibility of starting a company. And I had already done started some companies back then, back in, I guess you could say the the college years doing, you know, web design for people you know back when the web was very, very young and and just getting started those sorts of jobs.
00;04;45;15 - 00;05;15;02
And so I had already had an understanding of of the basics of of getting a business started. And so at that time, then, you know, Katie and myself and then another person began the companies really to focus on commercializing the linear scaling semi semi empirical quantum mechanics technology from from his lab and spinning that out again as as a company that's really focused on applying these methods to drug discovery working in the pharmaceutical space.
00;05;15;05 - 00;05;42;13
Yeah, I've been calling quantum bio a startup, but it's actually pretty established. It's spun out of Penn State in 2002. How did the company come to be and what does it aim to do? What were your highest aspirations for it? Well, I'll tell you, when you're around that long and you've done, you know, a lot of say, ups and downs, we we we always joke with our investors and everything else on the topic that you're really you know, there's a lot of trial by fire when it comes to entrepreneurship and that is part of the process.
00;05;42;13 - 00;06;07;00
And so you become very comfort, comfortable with trying different things, seeing what works, what doesn't work, and learning from mistakes and moving forward. And so when we first spun out the company, it was very focused on a we have a patent that's associated with it, which was a quantum scoring based methodology that again was published probably about that same time frame.
00;06;07;00 - 00;06;28;09
You know, you know, early 2000s. We thought this was going to be the greatest technology that was going to be known to man or whatever and was going to be very successful in pharma. And I think what we learned was that, you know, trying to just develop a academic software package and commercialize it, it's well, it takes a lot more than just a good idea.
00;06;28;10 - 00;06;50;22
You know, you really need to understand, you know, how