DiscoverResearch in ActionTalking AI, Computer Vision, Autism, and Small Data Problems
Talking AI, Computer Vision, Autism, and Small Data Problems

Talking AI, Computer Vision, Autism, and Small Data Problems

Update: 2023-08-16
Share

Description

How is computer vision being used to spot autism symptoms much earlier in children? What is augmented cognition? And how can you use AI to make data models work even with small data sets? We will learn those answers and more in this episode with Dr. Sarah Ostadabbas. Dr. Ostadabbas is an associate professor in Electrical and Computer Engineering at Northeastern University, where she is also the director of the Augmented Cognition Laboratory (ACLab), which works at the intersection of computer vision, pattern recognition, and machine learning. Before joining Northeastern, she was a post-doctoral researcher at Georgia Tech and earned her Ph.D. at the University of Texas at Dallas. A renowned expert in the field, her research focuses on the goal of enhancing human information-processing capabilities through the design of adaptive interfaces based on rigorous models using machine learning and computer vision algorithms. With over 100 peer-reviewed publications, Professor Ostadabbas has received recognition and awards from prestigious government agencies such as the National Science Foundation (NSF), the Department of Defense (DoD) as well as several private industries. In 2022, she received an NSF CAREER award to use artificial intelligence for the early detection of autism, which she is working on with Oracle for Research. http://www.oracle.com/research
 
---------------------------------------------------------
 
Episode Transcript:
 

00;00;00;00 - 00;00;26;15

How are computer vision and contactless techniques spotting signs of autism much earlier in children? What is augmented cognition and how can you use AI to make data models work, even with small datasets? We'll find all that out and more in this episode of Research in Action. Hello and welcome back to Research in Action, brought to you by Oracle for Research.

 

00;00;26;15 - 00;00;50;10

I'm Mike Stiles, and today we have with us Dr. Sarah Ostadabbas, an Associate Professor in the Electrical & Computer Engineering Department Northeastern University, where she's also director of the Augmented Cognition Laboratory (ACLab), which works at the intersection of computer vision, pattern recognition and machine learning. Before joining Northeastern, she was a postdoctoral researcher at Georgia Tech and got her Ph.D. at the University of Texas at Dallas.

 

00;00;50;13 - 00;01;24;04

Her research looks at how we can enhance human information processing capabilities by designing adaptive interfaces based on rigorous models using machine learning and computer vision algorithms. With over 100 peer reviewed publications. Professor Ostadabbas has received recognition and awards from government agencies like the National Science Foundation, the Department of Defense and several private industries. In 2022, she received an NSF career award to use AI for early detection of autism, and she's working on that with Oracle for Research.

 

00;01;24;04 - 00;01;43;26

Dr. Ostadabbas, thank you so much for being with us today. Thanks for having me. I'm excited to be here and feel free to call me Sarah. Well, listeners, get ready because we're going to get all into computer vision, machine learning, augmented cognition and wherever else I can get nosy about. But first, let's hear about you, Sarah, and your background.

 

00;01;43;26 - 00;02;12;08

Your passion for technology and physics kind of started back in childhood, right? Yes, that's correct. Actually, physics was my favorite subject in middle school and high school. I was so passionate about it that I even went through the whole volume of Fundamentals of Physics by David Halliday and Robert Resnick in I believe it was in 10th year of my high school, and I was seriously considering to pursue the continuous PhD in physics even before graduating from high school.

 

00;02;12;10 - 00;02;39;09

And alongside my love for physics, I was always also fascinated by technology, especially computers and programing. I started coding in a language called Basic, which some of your audience may not even heard about that. Why I was in middle school and loved it. Data Analytics capabilities of computer and how computers are giving advanced processing power to human no matter where they are.

 

00;02;39;11 - 00;03;12;14

I was still living in Iran at the time and experiencing technological advances at that time, such as Internet and cell phone, and they were all very much interesting. And fast forward, all of this led me to pursue a natural combination of my interests, which was an electrical and computer engineering degree with a double majoring in biomedical engineering. And now when I look back, it's actually heartwarming to see one that one seemed to be diverse.

 

00;03;12;14 - 00;03;41;17

Interesting collection of interests now have shaped my academic journey so far. Was it unusual for someone, you know, at your age, at that early age of middle school, to be coding and thinking about technology and physics and looking that far into the future? I was actually going to date if school, middle school and high school at that time was designed for for math and science.

 

00;03;41;17 - 00;04;06;00

So no, I had a lot of of my classmates going and exploring different science topics. So it wasn't unusual. I mean, it was unusual when I was taking these heavy books to my gathering at parties, at my family, but not at the school. So I'm glad. And it was 200 of us, 200 girls at and now all of us are all around the world.

 

00;04;06;06 - 00;04;28;02

Most of us have PhDs. And yeah, it wasn't unusual, but it, it was something that I cherish. Yeah, it's great that you had a school that focused on things like that. So let's kick things off with your NSF CAREER Award focused on developing machine learning algorithms towards the early detection of autism. Tell me if I get this wrong.

 

00;04;28;02 - 00;04;53;08

But this is about using computer vision to predict autism a lot earlier in children. And what does what does that research involve and what does Oracle for Research have to do with it? You're certainly right. As I mentioned, my academic background revolves around electrical and computer engineering, focusing on data processing. And these data sources can be signals, images and videos.

 

00;04;53;11 - 00;05;21;06

How might a specific focus a work on computer vision began when I joined Northeastern University as an assistant professor in 2016. As you may know and have heard of over the past decade, deep learning models have been driving advancements in many AI topics, including computer vision. But these algorithms often require a large amount of training data. They are very data hungry.

 

00;05;21;08 - 00;05;48;24

So my National Science Foundation CAREER Award aims to leverage this advancement in computer vision for a specific health related domain that suffera from limited data. And I'm in particularly focusing on detecting autism in infant even before the first birthday. And this is true processing videos that is collected from them when they are doing daily activities, which is not a lot of things that they do.

 

00;05;49;01 - 00;06;16;13

They are sleeping, playing or eating. And as I mentioned, my algorithm, they are designed to be data deficient because I'm working on the area that the there are not a lot of data due to this privacy and security reason, but adapting these complex networks, these complex neural networks which are which are building blocks of deep learning necessitates powerful computing resources.

 

00;06;16;20 - 00;06;44;25

And that's where our collaboration with Oracle become highly valuable, allows me to make this model adapted to this specific application. So you have videos, video cameras, monitoring the kids and kind of like an in the wild get capturing of data. And then the computing power is needed to crunch all that video and that pulls out certain patterns that reveal autism earlier.

 

00;06;44;25 - 00;07;07;14

Is that how it works? Yeah. I mean, you can say that you put that on the simpler words. Yes, exactly. I'm a simple man. No, no, no. I'm just it's a good I mean, it's a good, good way to describe that. Yes, that's correct. So what we do, we act

Comments 
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Talking AI, Computer Vision, Autism, and Small Data Problems

Talking AI, Computer Vision, Autism, and Small Data Problems