Classical and quantum features of Schur transform for information processing
Update: 2018-07-27
Description
It is well-known that Gaussian random variables have many attractive properties: they are maximum entropy, they are stable under addition and scaling, they give equality in the Entropy Power Inequality (and hence give sharp log-Sobolev inequalities) and have good entropy concavity properties. I will discuss the extent to which results of this kind can be formulated for discrete random variables, and how they relate to ideas of discrete log-concavity.
Comments
Top Podcasts
The Best New Comedy Podcast Right Now – June 2024The Best News Podcast Right Now – June 2024The Best New Business Podcast Right Now – June 2024The Best New Sports Podcast Right Now – June 2024The Best New True Crime Podcast Right Now – June 2024The Best New Joe Rogan Experience Podcast Right Now – June 20The Best New Dan Bongino Show Podcast Right Now – June 20The Best New Mark Levin Podcast – June 2024
In Channel