EP.73 告别“经验决策”:生成式AI重塑营销战略、组织与核心资产的底层逻辑 -《生成》解读 9
Description
在生成式人工智能技术全面渗透商业领域的今天,企业营销正经历从 “经验驱动” 到 “智能驱动” 的根本性变革。
本期播客为《生成:AI生产力重构营销新范式》新书解读第九章,以 “战略重构” 为核心,系统阐述了生成式 AI 如何重塑营销的战略制定、运营落地、组织管理与资产积累,为企业提供了清晰的转型路径与实践方向。

共谈嘉宾:
谭北平 — 营销科学家 MSAI联合主播 / 秒针营销科学院院长
钱峻 — 营销科学家 MSAI 联合主播 / MSAI M360 创+平台创始人
SHOWNOTES:
2:05 AI赋能企业营销战略制定、运营赋能、员工赋能及资产建设。
5:07 AI洞察力在战略方案的评估、客户行为分析以及决策支持的应用。
12:00 生成式营销应用趋势,从尝鲜到常态,多模态内容与全流程赋能。
14:48 人工智能重塑营销:超级员工与未来企业核心资产。
18:54 未来企业驯服AI模型匹配企业内部流程和价值观。
22:18 人类在AI时代要从日常工作中解放,培养AI领导力。
25:13 超级员工时代下的组织架构转型,一岗多能很重要。
26:48 AI生产力下企业核心资产从品牌转向数据、知识和模型。

一、生成式营销的四大核心应用板块:构建 “战略 - 运营 - 人 - 资产” 闭环
生成式 AI 并非单一工具,而是覆盖营销全场景的战略体系。“深层次营销战略蓝图” 明确将其划分为四大板块,形成从顶层设计到长期价值沉淀的完整链路,解决了传统营销 “碎片化、低效率、难沉淀” 的痛点。
(一)营销战略制定:AI 成为 “科学决策参谋”传统营销战略依赖人力调研,存在成本高、周期长、颗粒度粗的问题;而生成式 AI 通过多维度评估能力,让战略制定更精准、更高效。
- 核心价值:从 “利弊分析” 升级为 “多维度量化评估”,可针对方案的新颖性、可行性、特异性、影响力、可操作性打分。例如哈佛商业评论 2023 年案例显示,ChatGPT 对 “动态显示保质期包装” 方案评估时,既指出 “需开发新包装材料” 的可行性挑战,也明确 “减少食品浪费” 的社会价值,为决策提供数据支撑。
- 实践逻辑:整合消费者、行业、社会热点、媒介生态四大维度数据,自动构建客户画像、分析情绪倾向,让战略从 “拍脑袋” 变为 “数据驱动”。
作为最复杂的板块,营销运营赋能聚焦 “战略落地”,覆盖广告、社媒、内容、电商、用户、创新六大核心流程,实现 “从创意到投放” 的全自动化支持。
- 典型场景:当前主流平台已推出 “全流程解决方案”—— 广告主无需准备素材,平台可自动生成广告创意、开展 AB 测试、匹配投放渠道;以社媒营销为例,AI 可实时处理海量数据,生成符合平台调性的多模态内容,大幅降低运营人力成本。
- 关键优势:打破传统运营 “单点割裂” 的问题,让 “洞察 - 生产 - 审核 - 投放 - 评估” 形成闭环,例如某企业通过 AI 实现 “广告内容生成 - 投放效果分析 - 策略迭代” 的实时联动,效率提升 3 倍以上。
员工是营销落地的核心载体,生成式 AI 通过 “减负 + 提能”,推动普通员工向 “超级员工” 转型,重构营销团队的能力边界。
- 核心路径:一方面,AI 承接数据处理、内容排版等重复性工作,让员工聚焦创意、策略等核心任务;另一方面,通过 AI 工具实现 “一岗多能”,例如蒙牛巴黎奥运营销中,员工借助 AI 热点创意助手运营 “一人新闻社”,同时赋能 500 万终端门店的个性化营销,实现 “一人赋能千人” 的突破。
- 组织价值:推动团队从 “人力密集型” 转向 “智能协同型”,部分企业通过 AI 培训工具实现员工 “7×24 小时学习”,快速提升团队专业能力。
当生成式 AI 成为行业通用工具,企业的差异化竞争力将从 “品牌” 转向 “核心资产”,“数据、知识、模型资产” 是未来营销的 “护城河”。
- 资产类型:包括营销全流程数据(消费者行为、投放效果等)、行业知识沉淀(方案库、案例库等)、企业定制化 AI 模型(适配内部流程与价值观的专属模型)。
- 核心逻辑:传统营销中,品牌是核心资产,但 AI 让 “品牌打造” 趋于平权(小企业也能快速生成品牌内容);而专属资产具有 “不可复制性”—— 例如某企业通过积累 10 年营销数据训练的模型,能更精准预测消费者需求,这是竞争对手无法短期模仿的。

二、生成式营销的四大应用趋势:从 “试点探索” 到 “全面渗透”
根据可口可乐、美的等企业实践,总结出生成式营销的四大趋势,反映出技术从 “尝鲜” 到 “常态” 的落地进程,为企业布局提供参考。
(一)从 “尝鲜式应用” 到 “常态化融入”2023 年是生成式营销元年,如今头部品牌已将其纳入日常流程:可口可乐每年推出 AI 驱动的大型营销活动,美的将 AI 融入社媒内容生产,实现 “每月千条 AIGC 内容” 的稳定输出。这一趋势表明,生成式 AI 不再是 “加分项”,而是企业营销的 “基础能力”。
(二)从 “图文内容” 到 “多模态升级”早期 AI 营销以海报、平面广告等图文为主,当前已拓展至视频、音频、数字人等多模态形态:短视频广告可通过 AI 自动生成脚本与剪辑,数字人直播实现 “7×24 小时互动”,甚至催生出 “AI 美学”—— 例如某手机品牌用 AI 生成的视频广告,因 “视觉风格年轻化” 获得 Z 世代青睐。
(三)从 “单点突破” 到 “全流程覆盖”AI 应用不再局限于 “内容生成” 等单一环节,而是贯穿营销全链路:从 “用户洞察”(AI 分析评论情绪)到 “内容生产”(自动生成文案与视频),再到 “投放优化”(实时调整渠道策略),最终到 “效果评估”(量化 ROI),形成 “端到端” 的智能支持。
(四)从 “业务提效” 到 “组织赋能”初期 AI 核心价值是 “降本增效”(如减少外包成本),如今已升级为 “组织转型工具”:通过 AI 改造流程(如将审批流程内化至智能体)、参与战略制定(提供多场景战略选项)、赋能员工能力(AI 培训与考试),推动营销部门从 “执行单元” 升级为 “战略支撑单元”。

三、AI 时代的营销组织转型:三大核心命题亟待解决
生成式 AI 的普及,不仅改变营销方法,更倒逼企业重构组织架构、人才定位与资产认知。
(一)组织架构:从 “分工明确” 到 “一岗多能 + AI 管理”未来营销部门将呈现两大特征:一是 “一岗多能”,员工需掌握 “AI 工具操作 + 策略制定” 复合能力;二是 “AI 管理职能”,需专人负责 “优化 AI 流程、训练专属模型”,例如某企业设立 “AI 营销总监”,统筹内部模型训练与流程适配,实现 “AI 与业务深度融合”。
- 两种转型模式:部分企业选择 “精简内核 + 外部智库”(保留 5-10 人核心团队,外包非核心工作);另一部分企业选择 “全流程内化”(将 agency 工作收归内部,通过 AI 提升效率),两种模式均需以 “AI 管理能力” 为基础。
AI 不会完全取代人类,但会重新定义人类角色:如同程序员从 “写代码” 转向 “提需求”,营销人员需从 “做内容、算数据” 转向 “定策略、控方向”,核心是培养 “AI 领导力”—— 即 “驾驭 AI 工具、判断 AI 输出、优化 AI 流程” 的能力。例如某品牌营销经理通过 AI 生成 10 套方案后,聚焦 “筛选符合品牌调性的方案”,效率提升 5 倍。
(三)核心资产:从 “品牌” 到 “数据 + 知识 + 模型”传统营销中,品牌是企业最核心的资产;但在 AI 时代,“品牌稀缺性” 减弱(小企业可通过 AI 快速打造品牌),而 “数据、知识、模型资产” 成为新壁垒:
- 数据资产:消费者行为、投放效果等数据,可优化 AI 预测精度;
- 知识资产:内部方案库、案例库,能让 AI 更理解企业需求;
- 模型资产:定制化 AI 模型,可实现 “千人千面” 的营销适配。
这些资产无法通过短期投入获得,需企业长期积累,成为 “不可复制的竞争力”。

四、生成式 AI 不是 “工具”,而是营销的 “新底层逻辑”
生成式 AI 正在重构营销的 “底层逻辑”—— 它不仅是提升效率的手段,更是重塑战略、运营、组织与资产的核心支点。对于企业而言,唯有主动拥抱这一变革:将 AI 融入营销全流程、沉淀专属核心资产、培养 “AI + 营销” 复合型人才,才能在未来的竞争中占据主动。
每一次营销实施都应成为资产积累,每一次沟通都应形成可复用的知识,这正是生成式 AI 时代,企业营销的生存与发展之道。
TAKEAWAY
1、生成式 AI 可从新颖性、可行性等多维度量化评估营销方案,为企业战略制定提供科学决策支撑,解决传统人力调研成本高、周期长的问题。
2、生成式营销的核心应用框架包含四大板块,形成 “营销战略制定 - 营销运营赋能 - 员工赋能 - 资产建设” 的完整闭环,覆盖营销全场景。
3、营销运营赋能板块覆盖广告、社媒、内容等六大流程,主流平台已推出全流程解决方案,实现从创意生成到投放优化的自动化支持。
4、生成式 AI 能推动员工向 “超级员工” 转型,承接重复性工作,助力员工聚焦创意与策略,甚至实现 “一人赋能多人 / 多门店” 的效能突破。
5、当生成式 AI 成为行业通用工具,企业核心资产将从传统品牌转向数据资产、知识资产与模型资产,这类资产是构建长期差异化壁垒的关键。
6、生成式营销呈现四大应用趋势,即从尝鲜式应用到常态融入、从图文内容到多模态升级、从单点突破到全流程覆盖、从业务提效到组织赋能。
7、AI 时代营销组织架构需向 “一岗多能 + AI 管理” 转型,部分企业采用 “精简内核 + 外部智库” 或 “全流程内化” 模式,核心是强化 AI 流程管理能力。
8、人类在 AI 营销中的角色将从执行者转变为 “AI 领导者”,需具备驾驭 AI 工具、判断 AI 输出、优化 AI 流程的 “AI 领导力”。
9、生成式 AI 可整合客户多维度数据自动构建详细画像,通过多模态分析识别客户情绪倾向,帮助企业精准把握客户需求与优化服务。
10、生成式 AI 不仅是营销效率提升工具,更是重构营销战略、运营、组织与资产的底层逻辑,企业需主动融入以适应新竞争格局。
思考点
1、企业在推进生成式 AI 融入营销全流程时,需重点突破哪些环节,才能让 “数据、知识、模型资产” 有效转化为差异化竞争力?
2、面对 “一岗多能 + AI 管理” 的营销组织转型趋势,企业应如何设计人才培养体系,快速提升员工的 “AI 领导力”?
3、生成式 AI 覆盖营销全流程后,如何平衡 AI 的自动化决策与人类的创意判断,避免陷入 “效率优先但创意同质化” 的困境?