Episode 86 - Sarah Hart
Update: 2023-07-20
Description
<input onclick="this.value=this.value=='Episode Transcript (click to expand)'?'Hide Transcript':'Episode Transcript (click to expand)';" type="button" class="spoilerbutton" value="Episode Transcript (click to expand)">
Evelyn Lamb: Hello and welcome to My Favorite Theorem, the math podcast with no quiz at the end. Or perhaps today we should say the maths podcast with no quiz at the end. My name is Evelyn Lamb. I'm a freelance math and science writer in Salt Lake City, Utah. And this is your other host.
Kevin Knudson: Hi, I’m Kevin Knudson, professor of mathematics at the University of Florida. It's Juneteenth.
EL: It is, yeah.
KK: And I'm all alone this week. My wife's out of town. And yesterday was Father's Day and I installed cabinets in the laundry room. This is how I spend my Father's Day, something we've been talking about doing since we bought the house.
EL: That’s a dad thing to do.
KK: 14 years later, I finally installed some cabinets in the laundry room. So it looks like you had a good time in France, judging from your Instagram feed.
EL: Yes, yeah. And I'm freshly back, so I'm in that phase of jetlag where, like, you get up really early. And so it's 9am and I already went for a bike ride and did some baking and had a relaxing breakfast. At this point, I'm always like, “Why don't I do this all the time?” But eventually my natural circadian night owl rhythms will catch up with me. I'm enjoying enjoying my brief, brief morning person phase.
KK: Yeah. Never been one, won’t ever be one as far as I can.
EL: Yeah. Just keep moving west, and then you’ll be a morning person for as long as you can keep jetlag going.
KK: That’s right. That's right. Yeah.
EL: So yeah. Today we are very happy to have Sarah Hart on the show. Sarah, would you like to introduce yourself? And tell us a little bit about, you know, what you're all about?
Sarah Hart: Ah, yes. So my name is Sarah Hart. I'm a mathematician based in in London in the United Kingdom. I'm a professor of mathematics, but my true passion is finding the links and seeing them between mathematics and other subjects, whether that's music or art or literature. And so I think there's fascinating observations to be made there, you know, the symmetries and patterns that we love as mathematicians are in all other creative subjects. And it's fun to spot them and spot the mathematics that's hiding in all of our favorite things.
EL: Yeah. And of course, just a couple of months ago, you published a book about this. So will you tell us about it?
KK: Yeah,
SH: So this book, it's called Once Upon a Prime: The Wondrous Connections between Mathematics and Literature. And in the book, I explore everything from the hidden structures that are underneath various forms of poetry, to the ways that authors have used mathematical ideas in their writing to structure novels and other pieces of fiction and the ways that authors have used mathematical imagery and metaphor to enrich their writing, authors as diverse as you know, George Eliot, Leo Tolstoy, Marcel Proust, Kurt Vonnegut, you name it. And then I also look in the third section of the book at how mathematics itself and mathematicians are portrayed in fiction, because I think that's very, very interesting and shows us the ways in which those things at the time the books are written, how is the mathematics perceived? How has it made its way into popular culture? And how mathematicians are perceived as well, that tells us something fascinating, I think, about the place of mathematics in our culture.
EL: Yeah, definitely.
KK: We’re always portrayed as either mentally ill. Or just, like, absurd geniuses, you know, when really, you know, we're all pretty normal — most of us are pretty normal people, right?
SH: Yeah. Well, we are, as everybody, there's a range. There's a range of ways to be human. And there's a range of ways to be a mathematician. But yeah, we're not all tragic geniuses, or kind of amoral beings of pure logic, or any of those things that you find in books. So yeah, and there are some sympathetic portrayals of mathematicians out there, and I know I talk about some of those, but yeah, it's very interesting how these these tropes, these stereotypes can creep in.
EL: I must confess I'm about three quarters of the way through, I haven't quite finished that last section. But the first few sections that I've read, I've definitely — I keep adding books to my “Want to Read list,” so it’s a little dangerous.
SH: Oh yeah, it should have a little warning, the book, saying “You will need a bigger bookcase.” Unfortunately, you know, you will want to go and read all of these books. And yeah, “Sorry, not sorry,” I think is the phrase.
EL: Yes, definitely. I downloaded — so I don't need a bigger bookshelf because I put this one on my ereader — but I downloaded The Luminaries, which sounds like a really interesting book and excited to get to that, you know, in the neverending list of books that I'd like to read.
KK: Right, we were talking about talking about our tsundoku business before [tsundoku is a Japanese word for accumulating books but not reading them]. So I actually I did, with a friend in the lit department, or in the language department, we taught a course on math and literature a few years ago.
SH: That’s fantastic.
KK: It was. It was so much fun. It's the best teaching experience I've ever had. But I was glad to read your book because we missed so much. Right? I mean, of course, we only had 15 weeks, you know, we and we talked about Woolf, like To the Lighthouse is kind of an interesting one. And yeah, I did finish the book. So sorry, Evelyn, I won. But no, it's it's actually, you know, it is spectacularly well written and, and I'm glad you're having success with it. Because it's — again, I like this idea, that you're sort of humanizing mathematicians and mathematics and showing people how it's everywhere. Isn't that part of your job? Aren’t you the Gresham professor, is that correct?
SH: Yes, I’m the Gresham professor of geometry. So Gresham College is this really unique institution, actually. It was founded in 1597 in the will of Sir Thomas Gresham, who was a financier at the Court of Queen Elizabeth I in Tudor times. And in his will, he left provision for this college to be founded that would have seven professors, and their whole job was to give free lectures, at the time to the people of London. Of course now it's all livestreamed and it goes out and is available all over the internet. And anyone could go and it was just, you know, if you wanted to learn these subjects — and he thought there were seven most important subjects at the time that he said, I still say, geometry and mathematics more broadly, very important — but it was geometry, music, astronomy, law, rhetoric, physic, which is the old word for medicine, and I perhaps I’ve forgotten one. But yeah, these subjects, and so still today, this is what Gresham College does, free public lectures to anyone who wants to come. Now, you used to have to give them once in Latin and once in English. Now, you do not have to do it, thank goodness.
KK: Yeah. Who would come?
SH: I don’t know. Yeah, if I had to suddenly give my lectures in Latin, that might be slightly more of a challenge. My role there is to communicate mathematical ideas to anyone who wants to listen, so a general audience. And some of them will have mathematical training, but many will not. And they they're just kind of interested people who find things in general interesting, and mathematics is part of that. I love that idea, that mathematics is part of what a culturally interesting person might want to know about. And that is something that perhaps used to be more so than it is today. And I really would like mathematics to somehow be rehabilitated into what the cultural conversation involves, rather than it seems to be perhaps in a little bit, sometimes it's pigeon holed or put to one side, you have to be a geek to like mathematics. You have to be unusual. And it's really not true. It's not the case.
EL: Yeah. Wow, that sounds like a dream job. I’m writing that down and putting it on my dream board? It's yeah.
KK: I seem to remember, so I read the review of your book, I think by Jordan Ellenberg, who's also been on.
SH: Yes.
KK: It mentioned that the first person who held your chair invented long division. Is that right?
SH: It’s true.
KK: That's what used to get you a university job, is you invent long division.
SH: Yeah. So that's, you know, what a lineage to be part of. I really feel honored and humbled to be in that role. And, actually, I'm the first woman to do this job in its 400 and whatever year history which, yeah, okay, you could say, yes, we might be a bit late with that one. But I feel it's a real privilege to do it.
EL: Yeah. Well, that's wonderful. So we have invited you on this show to tell us what your favorite theorem is. So have at it.
SH: Okay, so, my favorite theorem, I guess it's could be called a collection of theorems really, but the properties of the cycloid. So the cycloid is, it’s my favorite curve. And it's my favorite curve that probably unless you're a mathematician, you may not have heard of it. So people have heard of ellipses and circles and parabolas. And they've heard of shapes like triangles and things, but cycloids, people tend not to have heard of. And for me that's a surprise because they're so lovely. And the history of the study of the cycle of which, you know, we can we can talk about, is so fascinating and fun, and so many of the most famous mathematicians that people
Evelyn Lamb: Hello and welcome to My Favorite Theorem, the math podcast with no quiz at the end. Or perhaps today we should say the maths podcast with no quiz at the end. My name is Evelyn Lamb. I'm a freelance math and science writer in Salt Lake City, Utah. And this is your other host.
Kevin Knudson: Hi, I’m Kevin Knudson, professor of mathematics at the University of Florida. It's Juneteenth.
EL: It is, yeah.
KK: And I'm all alone this week. My wife's out of town. And yesterday was Father's Day and I installed cabinets in the laundry room. This is how I spend my Father's Day, something we've been talking about doing since we bought the house.
EL: That’s a dad thing to do.
KK: 14 years later, I finally installed some cabinets in the laundry room. So it looks like you had a good time in France, judging from your Instagram feed.
EL: Yes, yeah. And I'm freshly back, so I'm in that phase of jetlag where, like, you get up really early. And so it's 9am and I already went for a bike ride and did some baking and had a relaxing breakfast. At this point, I'm always like, “Why don't I do this all the time?” But eventually my natural circadian night owl rhythms will catch up with me. I'm enjoying enjoying my brief, brief morning person phase.
KK: Yeah. Never been one, won’t ever be one as far as I can.
EL: Yeah. Just keep moving west, and then you’ll be a morning person for as long as you can keep jetlag going.
KK: That’s right. That's right. Yeah.
EL: So yeah. Today we are very happy to have Sarah Hart on the show. Sarah, would you like to introduce yourself? And tell us a little bit about, you know, what you're all about?
Sarah Hart: Ah, yes. So my name is Sarah Hart. I'm a mathematician based in in London in the United Kingdom. I'm a professor of mathematics, but my true passion is finding the links and seeing them between mathematics and other subjects, whether that's music or art or literature. And so I think there's fascinating observations to be made there, you know, the symmetries and patterns that we love as mathematicians are in all other creative subjects. And it's fun to spot them and spot the mathematics that's hiding in all of our favorite things.
EL: Yeah. And of course, just a couple of months ago, you published a book about this. So will you tell us about it?
KK: Yeah,
SH: So this book, it's called Once Upon a Prime: The Wondrous Connections between Mathematics and Literature. And in the book, I explore everything from the hidden structures that are underneath various forms of poetry, to the ways that authors have used mathematical ideas in their writing to structure novels and other pieces of fiction and the ways that authors have used mathematical imagery and metaphor to enrich their writing, authors as diverse as you know, George Eliot, Leo Tolstoy, Marcel Proust, Kurt Vonnegut, you name it. And then I also look in the third section of the book at how mathematics itself and mathematicians are portrayed in fiction, because I think that's very, very interesting and shows us the ways in which those things at the time the books are written, how is the mathematics perceived? How has it made its way into popular culture? And how mathematicians are perceived as well, that tells us something fascinating, I think, about the place of mathematics in our culture.
EL: Yeah, definitely.
KK: We’re always portrayed as either mentally ill. Or just, like, absurd geniuses, you know, when really, you know, we're all pretty normal — most of us are pretty normal people, right?
SH: Yeah. Well, we are, as everybody, there's a range. There's a range of ways to be human. And there's a range of ways to be a mathematician. But yeah, we're not all tragic geniuses, or kind of amoral beings of pure logic, or any of those things that you find in books. So yeah, and there are some sympathetic portrayals of mathematicians out there, and I know I talk about some of those, but yeah, it's very interesting how these these tropes, these stereotypes can creep in.
EL: I must confess I'm about three quarters of the way through, I haven't quite finished that last section. But the first few sections that I've read, I've definitely — I keep adding books to my “Want to Read list,” so it’s a little dangerous.
SH: Oh yeah, it should have a little warning, the book, saying “You will need a bigger bookcase.” Unfortunately, you know, you will want to go and read all of these books. And yeah, “Sorry, not sorry,” I think is the phrase.
EL: Yes, definitely. I downloaded — so I don't need a bigger bookshelf because I put this one on my ereader — but I downloaded The Luminaries, which sounds like a really interesting book and excited to get to that, you know, in the neverending list of books that I'd like to read.
KK: Right, we were talking about talking about our tsundoku business before [tsundoku is a Japanese word for accumulating books but not reading them]. So I actually I did, with a friend in the lit department, or in the language department, we taught a course on math and literature a few years ago.
SH: That’s fantastic.
KK: It was. It was so much fun. It's the best teaching experience I've ever had. But I was glad to read your book because we missed so much. Right? I mean, of course, we only had 15 weeks, you know, we and we talked about Woolf, like To the Lighthouse is kind of an interesting one. And yeah, I did finish the book. So sorry, Evelyn, I won. But no, it's it's actually, you know, it is spectacularly well written and, and I'm glad you're having success with it. Because it's — again, I like this idea, that you're sort of humanizing mathematicians and mathematics and showing people how it's everywhere. Isn't that part of your job? Aren’t you the Gresham professor, is that correct?
SH: Yes, I’m the Gresham professor of geometry. So Gresham College is this really unique institution, actually. It was founded in 1597 in the will of Sir Thomas Gresham, who was a financier at the Court of Queen Elizabeth I in Tudor times. And in his will, he left provision for this college to be founded that would have seven professors, and their whole job was to give free lectures, at the time to the people of London. Of course now it's all livestreamed and it goes out and is available all over the internet. And anyone could go and it was just, you know, if you wanted to learn these subjects — and he thought there were seven most important subjects at the time that he said, I still say, geometry and mathematics more broadly, very important — but it was geometry, music, astronomy, law, rhetoric, physic, which is the old word for medicine, and I perhaps I’ve forgotten one. But yeah, these subjects, and so still today, this is what Gresham College does, free public lectures to anyone who wants to come. Now, you used to have to give them once in Latin and once in English. Now, you do not have to do it, thank goodness.
KK: Yeah. Who would come?
SH: I don’t know. Yeah, if I had to suddenly give my lectures in Latin, that might be slightly more of a challenge. My role there is to communicate mathematical ideas to anyone who wants to listen, so a general audience. And some of them will have mathematical training, but many will not. And they they're just kind of interested people who find things in general interesting, and mathematics is part of that. I love that idea, that mathematics is part of what a culturally interesting person might want to know about. And that is something that perhaps used to be more so than it is today. And I really would like mathematics to somehow be rehabilitated into what the cultural conversation involves, rather than it seems to be perhaps in a little bit, sometimes it's pigeon holed or put to one side, you have to be a geek to like mathematics. You have to be unusual. And it's really not true. It's not the case.
EL: Yeah. Wow, that sounds like a dream job. I’m writing that down and putting it on my dream board? It's yeah.
KK: I seem to remember, so I read the review of your book, I think by Jordan Ellenberg, who's also been on.
SH: Yes.
KK: It mentioned that the first person who held your chair invented long division. Is that right?
SH: It’s true.
KK: That's what used to get you a university job, is you invent long division.
SH: Yeah. So that's, you know, what a lineage to be part of. I really feel honored and humbled to be in that role. And, actually, I'm the first woman to do this job in its 400 and whatever year history which, yeah, okay, you could say, yes, we might be a bit late with that one. But I feel it's a real privilege to do it.
EL: Yeah. Well, that's wonderful. So we have invited you on this show to tell us what your favorite theorem is. So have at it.
SH: Okay, so, my favorite theorem, I guess it's could be called a collection of theorems really, but the properties of the cycloid. So the cycloid is, it’s my favorite curve. And it's my favorite curve that probably unless you're a mathematician, you may not have heard of it. So people have heard of ellipses and circles and parabolas. And they've heard of shapes like triangles and things, but cycloids, people tend not to have heard of. And for me that's a surprise because they're so lovely. And the history of the study of the cycle of which, you know, we can we can talk about, is so fascinating and fun, and so many of the most famous mathematicians that people
Comments
Top Podcasts
The Best New Comedy Podcast Right Now – June 2024The Best News Podcast Right Now – June 2024The Best New Business Podcast Right Now – June 2024The Best New Sports Podcast Right Now – June 2024The Best New True Crime Podcast Right Now – June 2024The Best New Joe Rogan Experience Podcast Right Now – June 20The Best New Dan Bongino Show Podcast Right Now – June 20The Best New Mark Levin Podcast – June 2024
In Channel