DiscoverDaily Paper CastFrom Scores to Skills: A Cognitive Diagnosis Framework for Evaluating Financial Large Language Models
From Scores to Skills: A Cognitive Diagnosis Framework for Evaluating Financial Large Language Models

From Scores to Skills: A Cognitive Diagnosis Framework for Evaluating Financial Large Language Models

Update: 2025-08-22
Share

Description

🤗 Upvotes: 53 | cs.CE



Authors:

Ziyan Kuang, Feiyu Zhu, Maowei Jiang, Yanzhao Lai, Zelin Wang, Zhitong Wang, Meikang Qiu, Jiajia Huang, Min Peng, Qianqian Xie, Sophia Ananiadou



Title:

From Scores to Skills: A Cognitive Diagnosis Framework for Evaluating Financial Large Language Models



Arxiv:

http://arxiv.org/abs/2508.13491v1



Abstract:

Large Language Models (LLMs) have shown promise for financial applications, yet their suitability for this high-stakes domain remains largely unproven due to inadequacies in existing benchmarks. Existing benchmarks solely rely on score-level evaluation, summarizing performance with a single score that obscures the nuanced understanding of what models truly know and their precise limitations. They also rely on datasets that cover only a narrow subset of financial concepts, while overlooking other essentials for real-world applications. To address these gaps, we introduce FinCDM, the first cognitive diagnosis evaluation framework tailored for financial LLMs, enabling the evaluation of LLMs at the knowledge-skill level, identifying what financial skills and knowledge they have or lack based on their response patterns across skill-tagged tasks, rather than a single aggregated number. We construct CPA-QKA, the first cognitively informed financial evaluation dataset derived from the Certified Public Accountant (CPA) examination, with comprehensive coverage of real-world accounting and financial skills. It is rigorously annotated by domain experts, who author, validate, and annotate questions with high inter-annotator agreement and fine-grained knowledge labels. Our extensive experiments on 30 proprietary, open-source, and domain-specific LLMs show that FinCDM reveals hidden knowledge gaps, identifies under-tested areas such as tax and regulatory reasoning overlooked by traditional benchmarks, and uncovers behavioral clusters among models. FinCDM introduces a new paradigm for financial LLM evaluation by enabling interpretable, skill-aware diagnosis that supports more trustworthy and targeted model development, and all datasets and evaluation scripts will be publicly released to support further research.

Comments 
In Channel
loading
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

From Scores to Skills: A Cognitive Diagnosis Framework for Evaluating Financial Large Language Models

From Scores to Skills: A Cognitive Diagnosis Framework for Evaluating Financial Large Language Models

Jingwen Liang, Gengyu Wang