DiscoverSpectrumMichel Maharbiz & Daniel Cohen, Part 1 of 2
Michel Maharbiz & Daniel Cohen, Part 1 of 2

Michel Maharbiz & Daniel Cohen, Part 1 of 2

Update: 2014-01-24
Share

Description

Michel Maharbiz & Daniel Cohen. Michel is an Assoc Prof with EECS-UCB. His research is building micro/nano interfaces to cells and organisms: bio-derived fabrication methods. Daniel received his PhD from UCB and UCSF Dept of Bioengineering in 2013.


Transcript


Speaker 1:        Spectrum's next. 


Speaker 2:        Okay. 


Speaker 1:        Welcome to spectrum the science and technology show on k a l x Berkeley, a biweekly 30 minute [00:00:30 ] program bringing you interviews featuring bay area scientists and technologists as well as a calendar of local events and news. 


Speaker 3:        Hi and good afternoon. My name is Brad Swift. I'm the host of today's show. Today we are presenting part one of two interviews with Michelle and Harb is and Daniel Cohen. Michelle is an associate professor with the Department of Electrical Engineering and computer science at UC Berkeley and the Co director of the Berkeley Sensor and actuator center. [00:01:00 ] His current research interests include building micro and nano interfaces to cells and organisms and exploring bio derived fabrication methods. Daniel Cohen received his phd from the Joint UC Berkeley and UCLA Department of bioengineering program in 2013 his phd advisor was Michelle Ma harvests. Together they have been working on the fronts project and NSF f Free Grant [00:01:30 ] F re stands for emerging frontiers and research and innovation fronts is the acronym for flexible, resorbable, organic and nanomaterial therapeutic systems. In part one of our interview, we discuss how they came to the challenge of measuring and understanding the so-called wound field. Here's part one, Michelle [inaudible] and Daniel cone. Welcome to spectrum. Thank you. Thanks. How was it that [00:02:00 ] electrical fields generated by wounds was discovered? So I think Daniel should take this one cause he's the, he's the group historian on this topic. In fact, he gave us a little dissertation during this thesis talk 


Speaker 4:        in the day when electricity was sort of still a parlor trick. There was a lot of work being done to try to figure out where it was coming from. There was a lot of mysticism associated with it. And this is in the mid to late 17 hundreds and so Galvani is a name most people have heard. Galvanism was a term [00:02:30 ] coined for his work and what he found was all the work with frog legs. So he used to dissect frogs and could show that if you had dissimilar metals in contact with different parts of the muscle and the nerves, the legs with twitch and amputate the frog leg. So his conclusion was that electricity had something to do with life and their living things were made alive by having this spark of life. And this was a really super controversial idea because for a long time there had been a philosophical debate raging about vitalism versus mechanism, which is the idea that all living things are special because of some intrinsic vital force versus the idea [00:03:00 ] that physical principles explain life. 


Speaker 4:        So the vitalist really liked this idea that electricity is the spark that makes living things special. There's a lot of dispute about this, but eventually Volta who is right after him and who the vault is named after showed that it was really just the movement of ions and things in salt solutions, but it was a little too late and the mystical aspect of this had come along. So the problem then was that this idea prevailed into the early 18 hundreds and so Galvani his nephew Aldini started doing [00:03:30 ] these experiments in England where he was given permission to take executed criminals and basically play with the corpses and he was able to create a corpus that would go like this. And raise an arm or wink an eye at an audience. And this was the idea of the reanimated corpse. So people were having a lot of fun with this, but it wasn't clear that it wasn't mystical. 


Speaker 4:        And so this is the long answer to the question, but that's the backdrop where the science starts to come in. So the first thing is Frankenstein gets published out of this, and everybody's getting into the whole vitalism idea [00:04:00 ] at this point. And Frankenstein was written as a part of a horror story competition. It was almost a joke. But the funny thing is Frankenstein. Well, how would you say Frankenstein? The monster came to life to lightning? Like that's a line. It wasn't a Hollywood fabrication and everyone assumed that. But Mary Shelley never wrote anything about lightning or electricity. She in fact, wrote the technology was too dangerous to describe in texts for the average person. But in her preface, she explains that the whole origin of this idea, and this is where the answer to the question comes from, was that [00:04:30 ] she had writer's block when she was writing the story and she overheard her husband Percy Shelley and Lord Byron having an argument about work done by Erasmus, Darwin and Erasmus. 


Speaker 4:        Darwin was a big natural philosopher or scientist at the time who was a big vitalist. So he's really into the idea of the spark of life and also this idea of spontaneous generation that where does life come from when you have a compost heap, fruit flies appear. There was an idea that be composing garbage produced life, and that was part of spontaneous generation. And he did a lot of experiments where he'd seal things like wet flour into a bell jar [00:05:00 ] and to show that organisms came out in a sealed environment and they just didn't know about microorganisms and things like that. So he did a famous experiment where he dehydrated some species called Vermicelli all. Sorry, I made the mistake. I'm about to talk about 40 cello, which is a little organism. And when he added water again, they came back to life. Now, Lord Byron and Percy Shelley didn't understand any of this, and the conversation that Mary Shelley eavesdropped on was one where they said that Erasmus Darwin had taken Vermicelli Pasta, put it inside the Bell Jar, sealed [00:05:30 ] it, and through some magic of his own allowed it to twitch. 


Speaker 4:        So he had essentially given life to pasta. Now Mary Shelley wrote that she didn't believe any of this was actually really what happened. But this idea of animating the inanimate gave her the idea for Frankenstein. Then she writes the one line that links it to electricity, which is, and if any technology would have done this, it would probably have been galvanism, which is this idea of applying electricity to something. And so that's where this whole idea of life and electricity came from. By that point, the scientists had finally [00:06:00 ] caught up with all the mysticism and started to do more serious experiments, and that's when Carlo met Tucci in 18 and 30 something found that when you cut yourself, there's some sort of electrical signal at the injury source. And that was his main contribution that was called the wound current or the wound field and then after him was the guy who really formalized the whole thing, which was do Bob Raymond, who was a German electrophysiologist who found that if you have any sort of injury, he could actually measure a current flowing at the side of the injury. 


Speaker 4:        He could show that that changed over time. He cut his own thumb and [00:06:30 ] measured the current flow and they didn't have an explanation for why it happened, but they knew that it had something to do with the electric chemistry there. This was the birth of electrophysiology and then he went off and did all these things with action potentials in neurons, which is why almost no one's heard about this injury side and the fact that electricity's everywhere in the body normally and it's not mystical, it's electrochemical. We're much more familiar with the neural stuff and this other stuff on the wound side sort of languished until maybe the late 19 hundreds because it was rare. It was weird. It wasn't clearly important [00:07:00 ] and a lot of the players involved were so caught up in all sorts of other things that we tend to forget about this. So that was the whole long winded history of where the wound field came from. But it's a good story. It is a good story. Yeah. 


Speaker 5:        [inaudible] you are listening to spectrum KALX Berkeley. Our guests are Michael ml harvest and and Daniel Colon. They're both bioengineers in the next segment they talk about the genesis of the fronts [00:07:30 ] project. 


Speaker 6:        Michelle, when you approached the NSF yeah. For a grant for this idea, how long had you been thinking about it? The smart bandage idea, how far down stream were you with the idea? We had been toying with the idea for quite some time and there's a bit of background to this as well. So my group amongst other things builds flexible electrode systems. [00:08:00 ] You can call them for neuroscience in your engineering, and most of those systems are intended to record electrical signals across many different points across many electrodes usually honor in the brain. And so we had this basic technology lying around. This is sort of a competence that the group has had for quite awhile. The other thing that was beginning to intrigue us, and I have to credit Daniel for sort of beginning of the discussions and kind of pushing this along in the early years, so Daniel and I have like a tube man club of sitting around thinking of crazy things and [00:08:30 ] one of the things that Daniel had been interested in was the idea of resorbing or having so some of the materials disappear as they do their job in the body and this is a notion that's

Comments 
00:00
00:00
1.0x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Michel Maharbiz & Daniel Cohen, Part 1 of 2

Michel Maharbiz & Daniel Cohen, Part 1 of 2