DiscoverSpectrumMichel Maharbiz & Daniel Cohen, Part 2 of 2
Michel Maharbiz & Daniel Cohen, Part 2 of 2

Michel Maharbiz & Daniel Cohen, Part 2 of 2

Update: 2014-02-07
Share

Description

Michel Maharbiz & Daniel Cohen. Michel is an Assoc Prof with EECS-UCB. His research is building micro/nano interfaces to cells and organisms: bio-derived fabrication methods. Daniel received his PhD from UCB and UCSF Dept of Bioengineering in 2013.


Transcript


Speaker 1:        Spectrum's next 


Speaker 2:        [inaudible].


Speaker 1:        Welcome to spectrum the science and technology show on k [00:00:30 ] a l x Berkeley, a biweekly 30 minute program bringing you interviews featuring bay area scientists and technologists as well as a calendar of local events and news. Hello and good afternoon. My name is Chase Jakubowski and I'm the host of today's show. Today we present the final of our two interviews with Michelle Ma Harbas and Daniel Cohen. Michelle is an associate professor with the Department of Electrical Engineering and computer science at UC Berkeley. His [00:01:00 ] current research interests include building micro nano interfaces to cells and organisms and exploring the bio derive fabrication methods. Daniel Cohen received his phd from the Joint UC Berkeley U CSF Department of Bioengineering Program in 2013 together they have been working on the fronts project funded by the National Science Foundation. Fronts is an acronym for flexible, resorbable, organic nanomaterial therapeutic systems. In this part [00:01:30 ] two of our interview, we discussed the current limits of instrumenting the human body, the ethics that swirl about bioengineering and the entrepreneurial urges of engineers. Here's part two. Yeah. 


Speaker 3:        What sort of limits do you think there might be with these kinds of interfaces? Do you foresee any limitations on the technology or is it off we go, we don't have Saturday that work well in the body right now we don't have a sense of what to do with a lot of the data. It's not clear what you'd put in and out [00:02:00 ] getting the thing in. You're not going to do that on your own for most implants to put designs and so I think the limitations are huge, especially for electrical stimulation. There are very few safe ways of stimulating with DC fields inside the body. You need very special materials, short time periods. From an engineering perspective there are enormous challenges. Then people aren't going to be running around doing this anytime soon, but I think the data deluge is probably the biggest one we'll wind up with cause we'll eventually solve the technology side and then it's what do you do with all of this stuff? 


Speaker 3:        [00:02:30 ] I think there are an enormous engineering challenges, but I think of course for us it's exciting because we are engineers. I think that people see something like this and immediately we're very good at linear extrapolation, right? So, oh that means in five years we'll all look like terminator or something. So I think there's a lot of work to be done, as Daniel said, in building things that robustly survive in the body for very long periods of time, if that's what's required. You know we were talking about resorbable stuff, but you're talking about adding therapeutics or things that have a therapeutic function that are electrical in nature at some level. A lot of the there is, you actually want 


Speaker 4:        [00:03:00 ] them to last a long time in there and do their business and that's a very, very big open challenge. I would also say if you wanted to put on the futurist hat, you know in the end you're also limited by the substrate, right? You have a certain genetic code in your cells are predisposed to do certain things. So you know you're working with those base materials and what those cells are doing. And so I think there's a lot of future for this type of instrumentation, but you know, we're not going to look like the Borg anytime soon. I don't think. Are there any challenges that we haven't really gotten [00:03:30 ] to in developing these electronics so that they interact with biological systems in specifically technical stuff, environmental stuff, even legal and ethical things. Are there questions you guys wrestle with? We've had a lot of these cars, agent Daniel smiling because we've had conversations by often, not just with Daniel, with Peter [inaudible], who's another student that just graduated from the group. 


Speaker 4:        It does neuro. It started back when we were doing some of the bug work. I think for this project, I'm pretty comfortable. You know, we're working on very fundamental things. [00:04:00 ] I don't know that I could address them in intelligently today, but I think that there are interesting ethical concerns, societal concerns as we instrument ourselves more and more and they've been discussed. I mean, this is something that if you're interested in this topic, you can find quite a bit of discussion on the web or in various talks. When I started instrumenting my body to some extent. Where's the line, for example, between traditional FDA approved devices and consumer gadgets that you buy with your iPhone, where should that data go? You know, what are you going to do with it? Who's gonna do what with it? Is [00:04:30 ] it all yours? You know, there's an interesting argument that came, a friend of mine, David Lieberman, who's doesn't do this kind of work, but he's very interested in sensors and he's recently been interested in genetic screening and he brings up the fact that a lot of this extra information sometimes isn't very actionable and so it just adds noise. 


Speaker 4:        But from our perspective, I think what we're doing is pretty exciting and I think it has a chance to help people and it's early days, 


Speaker 3:        there's a lot more transparency than there used to be too. So the maker movement and just people are much more interested in trying things on themselves, [00:05:00 ] not cutting their arms up in, but instrumenting, looking at heart rate, looking at salinity of the skin, just different things that various startup companies are playing with and that you can look up schematics for on the Internet and so there's more of a culture of what you can get out of it. The enhancement side I think is somewhat behind right now because it's not even clear what we're doing with any of these. So ethically we haven't run into that issue quite yet. 


Speaker 4:        And in terms of the group that fronts contains all the different disciplines [00:05:30 ] that are working on it, it's a rather interdisciplinary project. Do you feel that your training taught you how to do interdisciplinary work or did you learn it on the job? I think I've always been in interdisciplinary environment in my work. I think it's always been accepted. I think it's been encouraged. I think that's the name of the game. Interestingly enough, I was just having a conversation with Edward Lee from our department two days ago where I was joking. I said the days of monastic academia are largely ending or, but interestingly enough, a lot of us choose academia [00:06:00 ] because we want to go live in a monastery. So it's say it's a very interesting sort of thing these days. I think certainly in a place like Berkeley, you want to make sure you're deep in your competence to, you're making contributions in a meaningful and deep way, but the nature of everything is very interdisciplinary.


Speaker 4:        Do you ever feel like, Oh, if I'd had more of this or more of that, if I'd had more exposure than I would just be so much more comfortable in this invited more money. No, I'm kidding. Now we're well funded. You know, you've only have so much time to spend in your field and to get competency. It's hard to do everything [00:06:30 ] and know everything. You can't really, you can't, but you should know who to talk to. Right. Interdisciplinary stuff is not trained and it's not easy to train someone in per se. It's a mindset and the environment is important. And in undergraduate work, you tend to be a specialist in something. And in Grad school you're expected to completely specialize, but I think you really miss out on a lot. So what's Nice, at least in Berkeley is it's very easy to transition across. Labs, talk to different people, set up collaborations, but at the end of the day, you're not going to be an expert in those things, [00:07:00 ] but you're going to know who to talk to and that creates a very nice network that is very innovative at the end of the day. 


Speaker 4:        So sub specialty in a way, or you're familiar with it, you can do the work if you need to, but you know people who really know that and that's the most important part. You put a good team together and that's where most of the innovations today are coming from. Not from single disciplines. Yeah, I think Berkeley is great for this. You have the freedom to go and you have brilliant people around that can inform and willing to participate with visibility and guide and mentor. I mean it's the freedom to do this and the mentors [00:07:30 ] to do it. I think all the top American institutions do this. But in engineering that's the modern approach. 


Speaker 5:        Mm MM. 


Speaker 6:        Spectrum is a public affair show on k a l ex Berkeley. Our guests are Michelle Maha [inaudible] and Daniel Cohen of UC Berkeley. They went to build a smart badge for wounds. In the next segment they talk about multidisciplinary work and [00:08:00 ] science fiction. 


Speaker 4:        Well, you started a company, you took research out of the lab and started a company and then sold it. And what did you learn from that process? I

Comments 
loading
00:00
00:00
1.0x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Michel Maharbiz & Daniel Cohen, Part 2 of 2

Michel Maharbiz & Daniel Cohen, Part 2 of 2