What is AI?
Description
-----------------------------------------------------------
Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started!
Nikita: Hello and welcome to the Oracle University Podcast. I’m Nikita Abraham, Team Lead of Editorial Services with Oracle University, and with me is Lois Houston, Director of Innovation Programs.
Lois: Hi everyone! Welcome to a new season of the podcast. I’m so excited about this one because we’re going to dive into the world of artificial intelligence, speaking to many experts in the field.
Nikita: If you've been listening to us for a while, you probably know we’ve covered AI from a bunch of different angles. But this time, we’re dialing it all the way back to basics. We wanted to create something for the absolute beginner, so no jargon, no assumptions, just simple conversations that anyone can follow.
Lois: That’s right, Niki. You don’t need to have a technical background or prior experience with AI to get the most out of these episodes. In our upcoming conversations, we’ll break down the basics of AI, explore how it's shaping the world around us, and understand its impact on your business.
Nikita: The idea is to give you a practical understanding of AI that you can use in your work, especially if you’re in sales, marketing, operations, HR, or even customer service.
Lois: Today, we’ll talk about the basics of AI with Senior Cloud Engineer Nick Commisso. Hi Nick! Welcome back to the podcast. Can you tell us about human intelligence and how it relates to artificial intelligence? And within AI, I know we have Artificial General Intelligence, or AGI, and Artificial Narrow Intelligence, or ANI. What’s the difference between the two?
Nick: Human intelligence is the intellectual capability of humans that allow us to learn new skills through observation and mental digestion, to think through and understand abstract concepts and apply reasoning, to communicate using language and understand non-verbal cues, such as facial expressions, tone variation, body language. We can handle objections and situations in real time, even in a complex setting. We can plan for short and long-term situations or projects. And we can create music, art, or invent something new or have original ideas. If machines can replicate a wide range of human cognitive abilities, such as learning, reasoning, or problem solving, we call it artificial general intelligence.
Now, AGI is hypothetical for now, but when we apply AI to solve problems with specific, narrow objectives, we call it artificial narrow intelligence, or ANI. AGI is a hypothetical AI that thinks like a human.
It represents the ultimate goal of artificial intelligence, which is a system capable of chatting, learning, and even arguing like us. If AGI existed, it would take the form like a robot doctor that accurately diagnoses and comforts patients, or an AI teacher that customizes lessons in real time based on each student's mood, pace, and learning style, or an AI therapist that comprehends complex emotions and provides empathetic, personalized support.
ANI, on the other hand, focuses on doing one thing really well. It's designed to perform specific tasks by recognizing patterns and following rules, but it doesn't truly understand or think beyond its narrow scope. Think of ANI as a specialist. Your phone's face ID can recognize you instantly, but it can't carry on a conversation. Google Maps finds the best route, but it can't write you a poem. And spam filters catch junk mail, but it can't make you coffee. So, most of the AI you interact with today is ANI. It's smart, efficient, and practical, but limited to specific functions without general reasoning or creativity.
Nikita: Ok then what about Generative AI?
Nick: Generative AI is a type of AI that can produce content such as audio, text, code, video, and images. ChatGPT can write essays, but it can't fact check itself. DALL-E creates art, but it doesn't actually know if it's good. Or AI song covers can create deepfakes like Drake singing "Baby Shark."
Lois: Why should I care about AI? Why is it important?
Nick: AI is already part of your everyday life, often working quietly in the background. ANI powers things like navigation apps, voice assistants, and spam filters. Generative AI helps create everything from custom playlists to smart writing tools. And while AGI isn't here yet, it's shaping ideas about what the future might look like. Now, AI is not just a buzzword, it's a tool that's changing how we live, work, and interact with the world.
So, whether you're using it or learning about it or just curious, it's worth knowing what's behind the tech that's becoming part of everyday life.
Lois: Nick, whenever people talk about AI, they also throw around terms like machine learning and deep learning. What are they and how do they relate to AI?
Nick: As we shared earlier, AI is the ability of machines to imitate human intelligence. And Machine Learning, or ML, is a subset of AI where the algorithms are used to learn from past data and predict outcomes on new data or to identify trends from the past.
Deep Learning, or DL, is a subset of machine learning that uses neural networks to learn patterns from complex data and make predictions or classifications. And Generative AI, or GenAI, on the other hand, is a specific application of DL focused on creating new content, such as text, images, and audio, by learning the underlying structure of the training data.
Nikita: AI is often associated with key domains like language, speech, and vision, right? So, could you walk us through some of the specific tasks or applications within each of these areas?
Nick: Language-related AI tasks can be text related or generative AI. Text-related AI tasks use text as input, and the output can vary depending on the task. Some examples include detecting language, extracting entities in a text, extracting key phrases, and so on.
Lois: Ok, I get you. That’s like translating text, where you can use a text translation tool, type your text in the box, choose your source and target language, and then click Translate. That would be an example of a text-related AI task. What about generative AI language tasks?
Nick: These are generative, which means the output text is generated by the model. Some examples are creating text, like stories or poems, summarizing texts, and answering questions, and so on.
Nikita: What about speech and vision?
Nick: Speech-related AI tasks can be audio related or generative AI. Speech-related AI tasks use audio or speech as input, and the output can vary depending on the task. For example, speech to text conversion, speaker recognition, or voice conversion, and so on. Generative AI tasks are generative, i.e., the output audio is generated by the model (for example, music composition or speech synthesis).
Vision-related AI tasks can be image related or generative AI. Image-related AI tasks use an image as the input, and the output depends on the task. Some examples are classifying images or identifying objects in an image. Facial recognition is one of the most popular image-related tasks that's often used for surveillance and tracking people in real time. It's used in a lot of different fields, like security and biometrics, law enforcement, entertainment, and social media.
For generative AI tasks, the output image is generated by the model. For example, creating an image from a textual description or generating images of specific style or high resolution, and so on. It can create extremely realistic new images and videos by generating original 3D models of objects, such as machine, buildings, medications, people and landscapes, and so much more.
Lois: This is so fascinating. So, now we know what AI is capable of. But Nick, what is AI good at?
Nick: AI frees you to focus on creativity and more challenging parts of your work. Now, AI isn't magic. It's just very good at certain tasks. It handles work that's repetitive, tim