Discover文理两开花新专辑预告:集异璧之大成
新专辑预告:集异璧之大成

新专辑预告:集异璧之大成

Update: 2024-06-08
Share

Description

我们这个挖了一年多的坑、夸下海口要做播客界第一解读GEB系列播客,的美好愿望,终于要实现了。
预告视频版:见微信公众号https://mp.weixin.qq.com/s/_dUShQdcMAjqWyPCDzGh9A
这是一本坑了自己很多年的书,多少次鼓起勇气,拿起来,又放下了。但是用它来盖泡面实在太厚,这么多年只用它杀死过一只小强。
但这的确是一本空前的奇书。买它的时候,念想也许和大家一样,听说是一位认知学大咖写的一本杰出的科普名著,以“很特别”的方式普及数理逻辑、人工智能领域中的艰深理论。但没想到的是,它的“特别”原来是“清奇”——智商难以承受之清奇。
翻开第一页,扑面而来的不是爱因斯坦,牛顿,或者图灵,而是巴赫那些脍炙人口的曲谱;然后是艾舍尔用巨大脑洞构思出来的奇特的画作;再然后是哥德尔不完备定理;最后,合上这本书的时候,还会看到封面上印着的“普利策文学奖”。
这真是一个“不可能三角”。以我浅薄的见识,一直认为数学、艺术和音乐这三个浩瀚的宇宙,一个人最多只能精通两个。但能同时在这三个宇宙中畅游的人,也许才能像作者侯世达一样——能用哲学数学来解构巴赫,能用哥德尔不完备定理的眼镜去欣赏艾舍尔,还能把数理逻辑学、可计算理论、人工智能、语言学、遗传学、音乐和绘画统统都放进“禅宗”的故事里,并用“乌龟”,“阿基里斯”,“螃蟹”和“树懒”之间的对话表达出来。
这本书的名字“G.E.B.”是三个名字的前缀——哥德尔、艾舍尔、巴赫。这三个名字,一个是二十世纪最伟大的数学家,一个是能把数学画进画中的艺术家,还有一个是西方近代音乐之父。
书的英文原名中有一个词——“Braid”。这是一个双关词,它的意思是把东西绑在一起的“带子”,但又是一个数学名词,暗示这本书正题和副题,上、下两个部分之间有“G、E、B”和“E、G、B”这几个首字母在次序上的照应。所以从书名开始,就是一个前后呼应的怪圈儿。
null
再看中文名:中文书名翻译成《集异璧之大成》。“集异璧”是GEB三个英文字母的译音,“大成”则取自于佛教、哲学和音乐典籍——所以这个名字既与原著的内容相呼应,又起到了一个双关作用——这又是一个前后呼应的圈儿。
再看封面图:是一个诡异的、悬在空中的、三个交汇的平面,分别在三个互相垂直的方向上投影出三个不同的汉字:“集”、“异”、“璧”(或者“G”、“E”、“B”)——就这样把哥德尔、艾舍尔和巴赫这三块稀世之宝嵌为一体,”集异璧之大成“。这三位大咖,就变成了某个奇妙的统一体在不同方向上的投影——又是一个怪圈儿。
侯世达的文字就像乐谱一样,对智商是一种酸爽的挑战。他会先提出一个概念,在“乌龟”,“阿基里斯”,“螃蟹”和“树懒”之间的对话中出场;然后在下一章中更深刻地“回响”出来,结构上或松散或严格地摹仿巴赫的乐曲、埃舍尔的幻觉艺术,和哥德尔的数学逻辑游戏——怪圈儿套怪圈儿,层层又叠叠。
给大家朗读几段原文感受一下它有多“奇”:
1. “巴赫”
null

“巴赫《音乐的奉献》中有一首极不寻常的卡农,它有三个声部,最高声部是国王主题的一个变奏,下面两个声部则提供了一个建立在第二主题之上的卡农化的和声。
这两个声部中较低的那个声部用C小调唱出主题,较高的那个则在差五度之上唱同一主题。当它结束时——或者似乎要结束时——已不再是C小调而是D小调了。巴赫在听众的鼻子底下转了调。而且这一结构使这个“结尾”很通顺地与开头联接起来,这样我们可以重复这一过程并在E调上回到开头——这些连续的变调带着听众不断上升到越来越遥远的调区。听了几段之后,听众会以为他要无休止地远离开始的调子了,然而在整整六次这样的变调之后,原来的C小调又魔术般地恢复了!所有的声部都恰好比原来高八度。在这里整部曲子可以以符合音乐规则的方式终止。
人们猜想,这就是巴赫的意图。但是巴赫很明确地留下了一个暗示,说这一过程可以无休止地进行下去。也许这就是为什么他在边空上写下了“转调升高,国王的荣耀也升高。
在这部卡农中,巴赫给了我们有关“怪圈”这一概念的第一个例子。所谓“怪圈”现象,就是当我们向上(或向下)穿过某种层次系统中的一些层次时,会意外发现,我们正好回到了开始的地方。”
2. "艾舍尔"
null

“把怪圈概念最优美最强烈地视觉化的人是荷兰版画家艾舍尔。艾舍尔创作了一些迄今以来最富于智能启发力的杰作。他的许多作品都源于悖论、幻觉或双重意义。他的作品里常常有一个化入艺术形式里的潜在概念。怪圈就是艾舍尔画中最常出现的主题之一。例如石版画《瀑布》,把它和巴赫的卡农做一下比较——会发现巴赫和艾舍尔用两个不同的“调子”——音乐和美术——演奏着同一个主题。
怪圈概念中所隐含的是无穷概念。循环不就是一种以有穷的方式表示无休止过程的方法吗?无穷在艾舍尔的许多画中起着重要作用。艾舍尔的天才在于,他不只是能设想出,而且还实际画出了几十种半实在半虚幻的世界,几十种充满了怪圈的世界,他似乎正在邀请他的观众们走进这些怪圈中去。”
3. "哥德尔"
null

“在我们看到的巴赫和艾舍尔的怪圈例子中,存在着有穷与无穷之间的冲突,因而使人有一种强烈的悖论感——我们直觉感到这里面一定涉及到了什么数学问题。二十世纪确实发现了一个产生了巨大反响的数学上的对应物。正像巴赫和艾舍尔的圈是作用于人们简单而古老的直观一样(音阶和楼梯),哥德尔对数学系统中怪圈的发现,也有着它简单而古老的直观根源。
哥德尔的发现把一个古老的哲学悖论转化成数学上的说法。那个悖论就是“说谎者悖论”:一个克里特岛人说过一句不朽的话:“所有克里特岛人都是说谎者。”更直截了当的说法是:“我在说谎”——如果你假定它是真的,那么它会立即产生相反的结果,使你认为它是假的。但是,如果你假定它是假的,同样会产生相反的结果,让你又回到它“必须是真的”这一点上。你可以试试看。”
我们这个挖了一年多的坑、夸下海口要做播客界第一解读GEB系列播客,的美好愿望,终于要实现了。《文理两开花》开始进入GEB季,每一集,我和Will老师会按照章节,根据一个逻辑线,把这本奇书中重要、精彩的部分拿出来,用文和理两种思维来碰撞。希望能帮助大家更好地理解这部经典。
至于会用多少集来读完,目前完全不清楚。我们且但行好事,莫问前程。
BGM:
1. Here she comes again, by Hatchatorium
2. Ave plague, by King Plague

关于《文理两开花》:
《文理两开花》是文科生思维和理科生思维在科技、经济、文化、哲学、货币、数字资产、元宇宙、Web3.0中的碰撞。当下的时代精神是“混沌”,我们试图在混沌中寻找秩序。
Twitter:
@LeiSalin_XP
@Will42W
TG群(开放)t.me
收听平台:
小宇宙:文理两开花
苹果播客|Spotify | Google Podcast | 等泛用型平台搜索收听《文理两开花(海外版)》(苹果播客中国区可复制open.firstory.me手动添加节目)
文字稿和延伸阅读:
微信公众号《文理两开花播客》
《文理两开花》newsletter。欢迎订阅:wenli.substack.com
其他平台:
即刻:文理两开花
《文理两开花》微信群:请添加坛子微信(WeChat ID: BKsufe),注明:文理两开花




留言告訴我你對這一集的想法: https://open.firstory.me/user/cl0roqwc0000l0hzje7se6f28/comments



Powered by Firstory Hosting
Comments 
In Channel
loading
00:00
00:00
1.0x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

新专辑预告:集异璧之大成

新专辑预告:集异璧之大成

小跑

We and our partners use cookies to personalize your experience, to show you ads based on your interests, and for measurement and analytics purposes. By using our website and our services, you agree to our use of cookies as described in our Cookie Policy.