DiscoverThe Automation PodcastInnovations in Coriolis Flowmeter Technology (P247)
Innovations in Coriolis Flowmeter Technology (P247)

Innovations in Coriolis Flowmeter Technology (P247)

Update: 2025-09-24
Share

Description


Shawn Tierney meets up with Lauton Rushford of Endress+Hauser to learn about new innovations in Coriolis Flowmeter Technology in this episode of The Automation Podcast.


For any links related to this episode, check out the “Show Notes” located below the video.




Watch The Automation Podcast from The Automation Blog:








Listen to The Automation Podcast from The Automation Blog:




The Automation Podcast, Episode 247 Show Notes:


Special thanks to Endress+Hauser for sponsoring this episode so we could release it “ad free!” To learn about Endress+Hauser, and Coriolis Flowmeters, checkout the below links:





Read the transcript on The Automation Blog: (automatically generated)


Shawn Tierney (Host): Welcome back to the automation podcast. Shawn Tierney here from Insights and Automation, and I wanna thank you for tuning back in. This week on the show, I meet up with Lawton Rushford from Endress and Hauser to learn all about the latest innovations in Coriolis flow meters. And I also wanna thank Endress and Hauser for sponsoring this episode so I could bring it to you completely ad free. With that said, if you’re interested in learning about what’s the latest in technology used in Coriolis flow meters, I think you’ll enjoy this episode.


I know I did. And with that, let’s go ahead and jump right into this week’s show. I wanna welcome to the show, Lawton from Endress and Hauser. Lawton, it’s great to have you on. This is the first time you’re on the show.


We plus, we’ve had your company on before. But, Lawton, if you don’t mind, could you, before we jump into Coriolis flow meters, which is an extremely important technology in our industry, could you first introduce yourself to our audience?


Lauton Rushford (E+H): Yeah. Absolutely. Thank you. My name is Lawton Rushford. I am the flow product marketing manager here at Anderson Hauser, based in Greenwood, Indiana, which is about twenty minutes south of Indianapolis, Indiana at our, national headquarters, for Anderson Hauser.


I’ve been with Anderson Hauser for seven years now, a whole bunch of different roles, but, for the last three years, I’ve been in this role, a flow marketing manager. Today, I I really wanted to highlight a couple of awesome innovations that we’ve had in Coriolis flow technology, over the last, we’ll see, about year or so, because I think there’s a lot of, use cases and a lot of awesome, insights we can get from from our Coriolis flow meters. And, yeah. So I guess we can we can kick it off. I did wanna highlight Anderson Hauser as the the manufacturer that I work for, and we have a history, a long history of, of innovation.


And so I’m gonna kinda highlight that, initially, talk about what sort of portfolio we have currently with our Coriolis flow meters, and then talk about a couple of new cool things that that we have released over the last couple of couple of months. And then finish off with, what we call heartbeat technology. It’s our advanced diagnostic system in all of our flow meters and all of our products across the board. It started with flow. So I think there’s a lot of you cool use cases, and I’ll I’ll highlight a couple of those as well.


And then, of course, Shawn is the the audience here. Anytime there’s questions or anything, please feel free to to let me know, and I can I can try and address them as they come up?


Shawn Tierney (Host): Sounds good. Yeah.


Lauton Rushford (E+H): Awesome. Great. So I guess our first Coriolis meter that we introduced into the market was back in, 1986. So it’s been some time. As you can tell by the the slide here, there’s a lot of different designs of Coriolis flowmeters.


There isn’t one right way to do it, but I think that the way that Anderson Houser has approached innovation is is pretty pretty awesome and pretty impressive. Everything from a single tube, design to a dual tube design, dual straight tube design versus a dual bent tube design. There are a lot of different types of Coriolis meters out on the market, and we’ll talk about a couple of, differentiators that we that, Anderson Hauser has on, on some products that we’ve recently released.


Shawn Tierney (Host): You know, just by looking at the, the slide here, the one that, like, really attracts my eye is the ProMASS. That’s the one that I I think I’ve seen the most in the field.


Lauton Rushford (E+H): Yep. Yep.


Shawn Tierney (Host): You know, walking around the different plants, and, that was launched in 1998. So that’s been out for quite some time. So just wanted to throw that out there for those listening. That may be the one you’ve seen the most of as in your in your travels.


Lauton Rushford (E+H): Yeah. Yeah. Definitely. There’s a lot of a lot of ProMasses out there. Our endpoint was the first one, but, shortly after that, we released our ProMasses.


And we’ve just been you know, we’ve we’ve had a lot of iterations, which I think is also part of the impressive thing in terms of innovation that Anderson Hauser continues to to to, do in terms of research and development on that. And the one that I always think about is is the the one that kinda looks like a UFO. That is our ProMASS X. It’s a high capacity, large diameter, Coriolis meter with four tubes in there. So it’s kind of bent two separate sys systems and then put together in one, large device, and I always I always think that one’s cool because it kinda looks like a like something out of Star Wars or something.


Yep. Yep. So, yep, so I I think that’s that’s really, really cool. There’s a lot of new things that we’ve released, and this is, I mean, this is a short timeline of of some of the innovations that we have. But, you know, over the last year or so, we’ve we’ve definitely invested a little bit more, into specific applications, and that kind of leads us into our entire portfolio of Coriolis flow meters.


We have 17 different sensors. So that is not a normal thing in the industry. I I think that to some people, it it can be confusing if you’re looking at them all at the same time, a little overwhelming. But I I think it’s really important that I that I kind of talk about this in terms of every application that we look at. We’re not trying to put one flow meter into that application.


We’re taking the application and the requirements of that application and designing a device that’s meant for it. So, in certain applications, you may not have to choose between 17 different sensors. You really have probably two or three that you’re trying to to decide between and weigh, both pressure drop, accuracy, density specifications, things like that that that will ultimately give you the the best meter for that application. But we we don’t wanna take a an approach of trying to, cram a a sensor into an application. We would prefer to design the sensor in and meant for certain applications.


So it does I guess there’s two questions on here. Why so many sensors? Well, because we wanna design our our sensors for specific applications. There’s a lot of different applications out there. Doesn’t that make it confusing?


Well, of course, it makes it a little confusing if you’re looking at it from from the high level 17 different sensors. But, every application that we look at, we’re we’re trying to, there’s a lot of different requirements of of applications in oil and gas versus life sciences, and we wanted to design sensors that fit the market and fit the application that they’re supposed to go into. And in general, all of them work the exact same way. As a as a general rule of thumb, your Coriolis flow meter measurements are mass flow, density, and temperature as a as a starting point. We’ll talk about a couple of features that we’ve started adding to some of our flow meters that that, create more of a multivariable device.


Instead of just measuring those three things, we can add viscosity or, we can do other things or concentration, things like that, with the meters. But in general, the mass flow is is using, the phase shift between your inlet and outlet pickup coils and taking that into account to relate it directly to the amount of mass that’s within those tubes. And then similarly, as the tubes are oscillating, a more dense fluid is going to have a lower resonant frequency. And based around resonant frequencies, we can understand how dense the fluid is inside of the, inside of those flow tubes. And then we also have on every single one of our Coriolis flow meters, PT 1,000, temperature probe that’s attached directly to the inside of the, the outside of the tube within the secondary containment, for additional values, additional multivariable, use uses.


I mean, for for example, on a on a concentration me

Comments 
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Innovations in Coriolis Flowmeter Technology (P247)

Innovations in Coriolis Flowmeter Technology (P247)

Insights In Automation