DiscoverDaily Paper CastMultiplayer Nash Preference Optimization
Multiplayer Nash Preference Optimization

Multiplayer Nash Preference Optimization

Update: 2025-10-01
Share

Description

🤗 Upvotes: 52 | cs.AI, cs.CL



Authors:

Fang Wu, Xu Huang, Weihao Xuan, Zhiwei Zhang, Yijia Xiao, Guancheng Wan, Xiaomin Li, Bing Hu, Peng Xia, Jure Leskovec, Yejin Choi



Title:

Multiplayer Nash Preference Optimization



Arxiv:

http://arxiv.org/abs/2509.23102v1



Abstract:

Reinforcement learning from human feedback (RLHF) has emerged as the standard paradigm for aligning large language models (LLMs) with human preferences. However, reward-based methods built on the Bradley-Terry assumption struggle to capture the non-transitive and heterogeneous nature of real-world preferences. To address this, recent studies have reframed alignment as a two-player Nash game, giving rise to Nash learning from human feedback (NLHF). While this perspective has inspired algorithms such as INPO, ONPO, and EGPO with strong theoretical and empirical guarantees, they remain fundamentally restricted to two-player interactions, creating a single-opponent bias that fails to capture the full complexity of realistic preference structures. In this work, we introduce Multiplayer Nash Preference Optimization (MNPO), a novel framework that generalizes NLHF to the multiplayer regime. It formulates alignment as an $n$-player game, where each policy competes against a population of opponents while being regularized toward a reference model. Our framework establishes well-defined Nash equilibria in multiplayer settings and extends the concept of duality gap to quantify approximation quality. We demonstrate that MNPO inherits the equilibrium guarantees of two-player methods while enabling richer competitive dynamics and improved coverage of diverse preference structures. Through comprehensive empirical evaluation, we show that MNPO consistently outperforms existing NLHF baselines on instruction-following benchmarks, achieving superior alignment quality under heterogeneous annotator conditions and mixed-policy evaluation scenarios. Together, these results establish MNPO as a principled and scalable framework for aligning LLMs with complex, non-transitive human preferences. Code is available at https://github.com/smiles724/MNPO.

Comments 
In Channel
loading
00:00
00:00
1.0x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Multiplayer Nash Preference Optimization

Multiplayer Nash Preference Optimization

Jingwen Liang, Gengyu Wang