DiscoverDaily Paper CastRealUnify: Do Unified Models Truly Benefit from Unification? A Comprehensive Benchmark
RealUnify: Do Unified Models Truly Benefit from Unification? A Comprehensive Benchmark

RealUnify: Do Unified Models Truly Benefit from Unification? A Comprehensive Benchmark

Update: 2025-10-01
Share

Description

🤗 Upvotes: 41 | cs.AI



Authors:

Yang Shi, Yuhao Dong, Yue Ding, Yuran Wang, Xuanyu Zhu, Sheng Zhou, Wenting Liu, Haochen Tian, Rundong Wang, Huanqian Wang, Zuyan Liu, Bohan Zeng, Ruizhe Chen, Qixun Wang, Zhuoran Zhang, Xinlong Chen, Chengzhuo Tong, Bozhou Li, Chaoyou Fu, Qiang Liu, Haotian Wang, Wenjing Yang, Yuanxing Zhang, Pengfei Wan, Yi-Fan Zhang, Ziwei Liu



Title:

RealUnify: Do Unified Models Truly Benefit from Unification? A Comprehensive Benchmark



Arxiv:

http://arxiv.org/abs/2509.24897v1



Abstract:

The integration of visual understanding and generation into unified multimodal models represents a significant stride toward general-purpose AI. However, a fundamental question remains unanswered by existing benchmarks: does this architectural unification actually enable synergetic interaction between the constituent capabilities? Existing evaluation paradigms, which primarily assess understanding and generation in isolation, are insufficient for determining whether a unified model can leverage its understanding to enhance its generation, or use generative simulation to facilitate deeper comprehension. To address this critical gap, we introduce RealUnify, a benchmark specifically designed to evaluate bidirectional capability synergy. RealUnify comprises 1,000 meticulously human-annotated instances spanning 10 categories and 32 subtasks. It is structured around two core axes: 1) Understanding Enhances Generation, which requires reasoning (e.g., commonsense, logic) to guide image generation, and 2) Generation Enhances Understanding, which necessitates mental simulation or reconstruction (e.g., of transformed or disordered visual inputs) to solve reasoning tasks. A key contribution is our dual-evaluation protocol, which combines direct end-to-end assessment with a diagnostic stepwise evaluation that decomposes tasks into distinct understanding and generation phases. This protocol allows us to precisely discern whether performance bottlenecks stem from deficiencies in core abilities or from a failure to integrate them. Through large-scale evaluations of 12 leading unified models and 6 specialized baselines, we find that current unified models still struggle to achieve effective synergy, indicating that architectural unification alone is insufficient. These results highlight the need for new training strategies and inductive biases to fully unlock the potential of unified modeling.

Comments 
In Channel
loading
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

RealUnify: Do Unified Models Truly Benefit from Unification? A Comprehensive Benchmark

RealUnify: Do Unified Models Truly Benefit from Unification? A Comprehensive Benchmark

Jingwen Liang, Gengyu Wang