Compactifications of reductive groups as moduli stacks of bundles
Update: 2011-06-29
Description
Given a reductive group G, we introduce a class of moduli problems of framed principal G-bundles on chains of projective lines. Their moduli stacks provide equivariant toroidal compactifications of G. All toric orbifolds are examples of this construction, as are the wonderful compactifications of adjoint groups of De Concini-Procesi. As an additional benefit, we show that every semi-simple group has a canonical orbifold compactification. We further indicate the connection with non-abelian symplectic cutting and the Losev-Manin spaces. This is joint work with Michael Thaddeus (Columbia U).
Comments
Top Podcasts
The Best New Comedy Podcast Right Now – June 2024The Best News Podcast Right Now – June 2024The Best New Business Podcast Right Now – June 2024The Best New Sports Podcast Right Now – June 2024The Best New True Crime Podcast Right Now – June 2024The Best New Joe Rogan Experience Podcast Right Now – June 20The Best New Dan Bongino Show Podcast Right Now – June 20The Best New Mark Levin Podcast – June 2024
In Channel