Topology of moduli spaces of vector bundles on a real algebraic curve
Update: 2011-06-30
Description
Moduli spaces of real and quaternionic vector bundles on a curve can be expressed as Lagrangian quotients and embedded into the symplectic quotient corresponding to the moduli variety of holomorphic vector bundles of fixed rank and degree on a smooth complex projective curve. From the algebraic point of view, these Lagrangian quotients are irreducible sets of real points inside a complex moduli variety endowed with an anti-holomorphic involution. This presentation as a quotient enables us to generalise the equivariant methods of Atiyah and Bott to a setting with involutions, and compute the mod 2 Poincaré series of these real algebraic varieties. This is joint work with Chiu-Chu Melissa Liu (Columbia).
Comments
Top Podcasts
The Best New Comedy Podcast Right Now – June 2024The Best News Podcast Right Now – June 2024The Best New Business Podcast Right Now – June 2024The Best New Sports Podcast Right Now – June 2024The Best New True Crime Podcast Right Now – June 2024The Best New Joe Rogan Experience Podcast Right Now – June 20The Best New Dan Bongino Show Podcast Right Now – June 20The Best New Mark Levin Podcast – June 2024
In Channel