Rank two Brill-Noether theory and the birational geometry of the moduli space of curves
Update: 2011-06-30
Description
I shall discuss applications of Koszul cohomology and rank two Brill-Noether theory to the intersection theory of the moduli space of curves. For instance, one can construct extremal divisors in M_g whose points are characterized in terms of existence of certain rank two vector bundles. I shall then explain how these subvarieties of M_g can be thought of as failure loci of an interesting prediction of Mercat in higher rank Brill-Noether theory.
Comments
Top Podcasts
The Best New Comedy Podcast Right Now – June 2024The Best News Podcast Right Now – June 2024The Best New Business Podcast Right Now – June 2024The Best New Sports Podcast Right Now – June 2024The Best New True Crime Podcast Right Now – June 2024The Best New Joe Rogan Experience Podcast Right Now – June 20The Best New Dan Bongino Show Podcast Right Now – June 20The Best New Mark Levin Podcast – June 2024
In Channel