DiscoverModuli SpacesVortices on Riemann Surfaces
Vortices on Riemann Surfaces

Vortices on Riemann Surfaces

Update: 2011-06-30
Share

Description

We will discuss the geometry and physics of U(1) vortex solutions on compact Riemann surfaces. The moduli space of N-vortex solutions has a natural Riemannian metric, for which there is a localised expression (Samols-Strachan) although this is not known explicitly. The volume of the moduli space is known, leading to an equation of state for a vortex gas. An asymptotic expression for the moduli space metric for one vortex on a large surface has been obtained, which could be developed further (Dunajski & Manton). The metric is also understood in the limit of a small surface, where the vortex dissolves (Manton & Romao).
Comments 
In Channel
loading
00:00
00:00
1.0x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Vortices on Riemann Surfaces

Vortices on Riemann Surfaces

Steve Greenham

We and our partners use cookies to personalize your experience, to show you ads based on your interests, and for measurement and analytics purposes. By using our website and our services, you agree to our use of cookies as described in our Cookie Policy.