DiscoverModuli SpacesStability conditions for the local projective plane
Stability conditions for the local projective plane

Stability conditions for the local projective plane

Update: 2011-07-01
Share

Description

Describing the space of Bridgeland stability conditions for the local projective plane turns out to be intimately related to classical results by Drezet and Le Potier on inequalities for Chern classes of slope-stable vector bundles on P2. I will describe how this allows one to relate the geometry of this space, and the group of autoequivalences, to the congruence subgroup Gamma1(3). I will also explain a mirror symmetry statement involving the moduli space of elliptic curves with Gamma1(3)-level structure. Time permitting, I will also discuss observations on the same problem for local del Pezzo surfaces. This is based on joint work with Emanuele Macrì.
Comments 
In Channel
loading
00:00
00:00
x

0.5x

0.8x

1.0x

1.25x

1.5x

2.0x

3.0x

Sleep Timer

Off

End of Episode

5 Minutes

10 Minutes

15 Minutes

30 Minutes

45 Minutes

60 Minutes

120 Minutes

Stability conditions for the local projective plane

Stability conditions for the local projective plane

Steve Greenham